ماتریس های نهایتاً نمایی نا منفی و کاربردهای آن

پایان نامه
چکیده

ساختار ماتریس های نمایی eta‎ به صورت یک سری‎ است. هدف اصلی پایان نامه، بررسی ماتریس ‎eta می باشد. به خصوص این که چه موقع eta نامنفی یا مثبت است. یعنی ‎a ‎ چه باشد تا eta نامنفی و یا مثبت باشد. در این پایان نامه ماتریس نهایتاً نامنفی (مثبت) را معرفی و خاصیت پرون فروبینیوس برای ماتریس ها را بررسی کرده و ارتباط آن ها با مجموعه های pfn‎ و wpfn‎ را مشاهده می کنیم. همچنین ماتریس های نهایتاً نمایی نامنفی(مثبت) را مورد بررسی قرار می دهیم و به خصوص اثبات می کنیم که ماتریس های نمایی نامنفی(مثبت) و اساساً نامنفی(مثبت) معادل هستند. علاوه بر این، روش لئونارد را برای بدست آوردن eta معرفی می کنیم. کلمات کلیدی‎: ‎ماتریس های نهایتاً نامنفی، ماتریس های نمایی نامنفی، نقاط با پتانسیل نامنفی، پرون فروبینیوس ،‎ ماتریس متزلر‎، مخروط محدب .

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ماتریس نمایی در فیزیک

در این مقاله پس از معرفی تابع نمایی، ماتریس نمایی را بیان خواهیم کرد. در ادامه ضمن بیان ویژگی هایی از ماتریس نمایی، چند روش محاسبه آن را به اختصار شرح می دهیم. سپس کاربردهایی از ماتریس نمایی در فیزیک بیان می شود.

متن کامل

مسئله مقدار ویژه معکوس ماتریس های نا منفی متقارن

در این پایان نامه در ابتدا مشخص ساز ی اثر صفر برای ماتریس های نا منفی متقارن از مرتبه پنج را مطرح کرده و در ادامه به مسئله وجود و ساختار ماتریس های نامنفی متقارن با طیف حقیقی می پردازیم همچنین مسئله مقدار ویژه معکوس برای ماتریس ها ی نا منفی متقارن از مرتبه 2 تا 6 را که از مسائل پیچیده در جبر خطی عددی بوده است مطرح کرده و این گونه مسائل را حل می کنیم. حل مسئله مقدار ویژه معکوس برای ماتریس های نا...

15 صفحه اول

ماتریس حسابداری اجتماعی مالی ایران و کاربردهای آن در اقتصاد

هدف این مقاله سنجش آثار جریان‌های مالی بر بخش واقعی اقتصاد ایران است. یکی از الگوهای قابل استفاده برای سنجش این آثار، الگوی ماتریس حسابداری اجتماعی مالی است. در این راستا، سوال اساسی پژوهش این است که بسط جریان مالی در چارچوب ماتریس حسابداری اجتماعی چگونه ضرایب فزاینده تولید را تحت تاثیر قرار می‌دهد؟ برای این منظور با استفاده از ماتریس حسابداری اجتماعی (SAM) ایران در سال 1378و ماتریس حسابداری اج...

متن کامل

ماتریس نمایی در فیزیک

در این مقاله پس از معرفی تابع نمایی، ماتریس نمایی را بیان خواهیم کرد. در ادامه ضمن بیان ویژگی هایی از ماتریس نمایی، چند روش محاسبه آن را به اختصار شرح می دهیم. سپس کاربردهایی از ماتریس نمایی در فیزیک بیان می شود.

متن کامل

مشخص سازی هایی از ماتریس های جمعا نا مثبت(جمعا منفی)

یک ماتریس حقیقی مرتبه ی ‎ ‎‏،‎‎ ‎ جمعاً نامثبت (جمعاً منفی)‎‎ نامیده می شود هرگاه هر مینور آن نامثبت (منفی) باشد‎. در این تحقیق مشخص سازی هایی از این رده های ماتریسی به وسیله ی مینورها‏، به وسیله ی تجزیه ی رتبه کامل آن ها و به وسیله ی تجزیه ی ‎‏ باریک آن ها ارائه ‏می شود.

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه شهید باهنر کرمان - دانشکده ریاضی و کامپیوتر

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023